If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-12x-54=0
a = 16; b = -12; c = -54;
Δ = b2-4ac
Δ = -122-4·16·(-54)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-60}{2*16}=\frac{-48}{32} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+60}{2*16}=\frac{72}{32} =2+1/4 $
| 4x+145=180 | | -3t+46=-23 | | 1.5x-5.3=2.5-2.7 | | -2+4v=-10 | | |8x-5|=-4 | | b+13=4 | | 7=-5b-23 | | 3x+1/2+1/2×=-3.5 | | 46+9a=-5+74 | | 3(x-6)+(4x+12)-6x=3x-9+4x+12-6x=(3x+4x-6x)+(-9+12)=x+3 | | 3+4.5x=2+5.75x | | j=5-1 | | 4x+50=98 | | 3y−13^2=−148 | | (3x-12)=582 | | 5x+15=2x-18 | | (3x+12)=582 | | (2x+4)+(3x+3)=17 | | 0.625g-8=0.125g+1 | | 46+9a=-5a+54 | | 4(1+4f)= | | 6^x=180 | | Y=5,040+0.59−30r | | 50*8=x | | 50x8=x | | 10x-6+3x+2x=180 | | –9g−6=–10g | | 3w-2=-7(w+6) | | 0.006x^2+0.6x-6.6=0 | | 3y-y=-12 | | –6n=–5n+10 | | 5/8g-8=1/8g+1 |